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Abstract 

Autonomous vehicles (AVs) rely heavily on deep learning models for perception, planning, and control. 

While these models achieve high accuracy, they operate as black boxes, making their decision-making 

process opaque. Lack of interpretability in safety-critical environments limits trust, hinders 

debugging, and complicates regulatory approval. This paper proposes an explainable deep learning 

framework for AV decision-making by integrating state-of-the-art perception and control models 

with post-hoc explainability techniques, specifically SHAP (Shapley Additive Explanations) and 

LIME (Local Interpretable Model-Agnostic Explanations). Using simulated driving scenarios in 

the CARLA simulator and real-world datasets such as KITTI and nuScenes, the framework generates 

actionable explanations for vehicle actions, including lane changes, braking, and steering. Our results 

demonstrate that XAI techniques can highlight critical features influencing decisions, uncover model 

biases, and assist developers in improving AV reliability. The proposed framework enhances safety, 

transparency, and accountability, providing a practical path toward regulatory-compliant 

autonomous systems. 
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Introduction 

 
Autonomous vehicles are at the forefront of 

intelligent transportation, offering the promise 

of enhanced safety, reduced traffic accidents, 

and improved mobility. Modern AVs rely on 

deep neural networks (DNNs) for tasks such 

as: 

• Perception: Object detection, 

semantic segmentation, and lane 

identification. 

• Planning: Path generation, obstacle 

avoidance, and trajectory prediction. 
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• Control: Steering, throttle, and 

braking commands. 

Despite impressive performance, DNNs are 

opaque. For instance, a network may decide to 

swerve suddenly or brake abruptly, but 

engineers cannot determine whether the 

decision was triggered by a genuine obstacle, 

sensor noise, or spurious correlations in 

training data. This lack of interpretability raises 

critical safety concerns and impedes trust 

among regulators, engineers, and the public. 

Explainable AI (XAI) offers techniques to 

generate human-understandable insights into 

black-box models. Two widely used post-hoc 

methods are: 

1. SHAP (Shapley Additive 

Explanations): Assigns feature 

importance scores using game- 

theoretic principles to quantify 

contributions of each input feature. 

2. LIME (Local Interpretable Model- 

Agnostic Explanations): Creates local 

surrogate models by perturbing inputs 

to approximate model behavior near a 

specific decision. 

Applying these techniques to AVs can provide 

actionable insights into why a vehicle 

performs a certain maneuver, helping to 

identify biases, incorrect reasoning, or model 

weaknesses. 

Challenges in AV Explainability: 

 

• High-dimensional input from multi- 

modal sensors (cameras, LiDAR, 

radar). 

• Temporal dependencies in sequential 

decisions. 

• Need for real-time or near-real-time 

explanations in simulation or 

operation. 

Contributions of this work: 

 

1. Integration of SHAP and LIME with 

AV perception and control pipelines. 

2. Analysis of simulated CARLA 

scenarios and real-world datasets 

(KITTI, nuScenes). 

3. Quantitative and qualitative evaluation 

of model interpretability and 

decision transparency. 
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4. Insights for safety verification and 

trust-building in autonomous driving 

systems. 

Literature Review 

 
A. Deep Learning in Autonomous Vehicles 

 

Deep learning has transformed AVs by 

enabling end-to-end perception and control: 

• CNNs: Used for image-based object 

detection, segmentation, and lane 

recognition. 

• RNNs/LSTMs: Capture temporal 

patterns for sequential decision- 

making. 

• Transformers: Emerging for multi- 

modal temporal reasoning, integrating 

camera and LiDAR data. 

AV systems such as Tesla Autopilot, Waymo, 

and OpenPilot demonstrate real-world 

applicability but remain black-box systems, 

which limits interpretability. 

B. Explainable AI (XAI) Techniques 

 

XAI  provides  tools  to  make  models 

transparent: 

• LIME: Perturbs input features (e.g., 

pixels, sensor readings) and fits a local 

linear model to approximate decision 

boundaries. Useful for understanding 

single-instance predictions. 

• SHAP: Assigns Shapley values to 

input features based on their 

contribution to the model’s output. 

Captures global and local importance 

and is mathematically grounded in 

cooperative game theory. 

Applications of XAI span finance, healthcare, 

and autonomous systems, with focus on 

trustworthiness, debugging, and regulatory 

compliance. In AVs, XAI can highlight which 

objects, lanes, or environmental cues 

influenced a vehicle’s action. 

C. Explainable AV Research 

 

Prior work in explainable AVs includes: 

 

• Saliency maps: Highlight regions of 

camera images influencing control 

decisions. 

• Attention mechanisms: Visualize 

which features the model “attends to” 

during prediction. 
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• Feature importance analysis: 

Quantifies the influence of specific 

inputs (e.g., LiDAR points, lane 

markings). 

Challenges remain in real-time applicability 

and integration with multi-sensor inputs. Our 

work addresses these by combining SHAP and 

LIME with both perception and control 

models, enabling comprehensive 

explainability across the AV pipeline. 

Problem Statement 

Autonomous vehicles face critical challenges 

due to the opacity of deep learning models: 

1. Lack of Interpretability: Engineers 

cannot verify whether actions are 

based on valid features. 

2. Safety and Compliance Risks: 

Without explainable reasoning, AVs 

cannot guarantee safety in edge cases 

(e.g., unexpected pedestrians, poor 

weather). 

 

Research Question: 

“How can post-hoc explainability techniques 

(SHAP and LIME) be effectively integrated 

with AV deep learning pipelines to provide 

interpretable, actionable insights for real- 

time decision-making without compromising 

performance?” 

 

The goal is to provide both qualitative and 

quantitative explanations of vehicle actions 

to improve trust, debugging, and regulatory 

compliance. 

 

Methodology 

 

 
A. System Overview 

 

The framework consists of four primary 

components: 

1. Data Acquisition: Multi-modal 

sensor data (camera, LiDAR, radar) 

from CARLA, KITTI, and nuScenes. 

2. Model Training: 

CNN/LSTM/Transformer models for 

perception and control, predicting 

object locations, lane positions, and 

control commands. 

3. Explainability Module: Apply SHAP 

and LIME to generate feature 

importance and saliency maps for 

decisions such as braking, lane 

changing, and obstacle avoidance. 

4. Visualization & Analysis: Visualize 

explanations using heatmaps, feature 

rankings, and temporal sequences to 

interpret AV actions. 

B. Datasets and Simulation 

 

• CARLA Simulator: Generates 

urban, highway, and adverse- 

condition scenarios. Provides full 

control over environmental conditions 

and ground-truth labels. 
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• KITTI Dataset: Real-world driving 

data with camera images and LiDAR 

for object detection and depth 

estimation. 

• nuScenes Dataset: Multi-modal 

dataset including 360° perception, 

dynamic objects, and vehicle states, 

supporting complex driving scenarios. 

Data Preprocessing: Align multi-modal data 

temporally, normalize sensor inputs, and 

convert LiDAR point clouds into voxel grids 

for CNN input. 

C. Model Implementation 

 

• Perception: CNN-based networks for 

object detection and semantic 

segmentation. 

• Control: LSTM/Transformer models 

predict steering, throttle, and 

braking. 

• SHAP: Calculates Shapley values for 

multi-modal inputs, ranking feature 

contributions globally and locally. 

• Explanations highlight critical 

features, such as pedestrian positions, 

lane markings, and traffic lights, 

affecting vehicle actions. 

E. Evaluation Metrics 

 

• Quantitative: MAE 

(steering/throttle/brake), IoU (object 

detection), trajectory deviation. 

• Qualitative: Expert evaluation of 

interpretability, clarity, and 

usefulness of SHAP/LIME 

visualizations. 

Results and Discussion 

 

A. Quantitative Results 

 
Brak 

• Loss Functions: Cross-entropy for 

object detection; mean squared error 

(MSE) for control commands. 

• Training: Conducted on GPU- 

enabled TensorFlow/PyTorch 
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environments, with hyperparameter 

tuning (learning rate, batch size, 

sequence length). 

D. Explainable AI Integration 

 

• LIME: Perturbs input frames/features 
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to approximate local linear models, 

providing explanations for individual 

vehicle decisions. 

• Transformer-based models perform 

slightly better, producing more stable 
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predictions that benefit 

interpretability. 

• Reduced MAE indicates more 

accurate vehicle actions, which 

enhances trustworthiness of 

explanations. 

B. Explainability Analysis 

 

• SHAP Heatmaps: Highlight which 

features (lane lines, pedestrians, 

obstacles) contributed to a decision. 

• LIME Analysis: Illustrates how 

perturbations in the input affect 

predicted actions, revealing temporal 

dependencies. 

• Identified model biases, e.g., over- 

reliance on lane markings over 

dynamic objects. 

• Experts found explanations intuitive, 

useful for debugging and scenario 

analysis. 

C. Real-Time Performance 

 

• LIME: ~180 ms per frame 

 

• SHAP: ~220 ms per frame 

• Both methods are feasible for offline 

evaluation; potential exists for real- 

time integration with optimization. 

Conclusion 

 

This research presents a comprehensive 

framework for explainable deep learning in 

autonomous vehicles: 

• Demonstrates integration of SHAP 

and LIME for perception and control 

decisions. 

• Evaluated on simulated CARLA 

scenarios and real-world datasets 

(KITTI, nuScenes). 

• Provides both quantitative and 

qualitative insights into vehicle 

behavior. 

• Enhances trust, safety, and 

debuggability of autonomous systems. 

Explainable AI is critical for regulatory 

compliance, public trust, and safe 

deployment of AVs. 
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Future Work 

 

1. Real-Time XAI Deployment: 

Optimize SHAP/LIME for live 

autonomous driving. 

2. Multi-Modal Integration: Combine 

camera, LiDAR, and radar 

explanations. 

3. User-Centric Explanations: Translate 

feature importance into natural 

language explanations for operators. 

4. Adversarial Robustness: Evaluate 

explanations under sensor noise and 

attacks. 

5. Adaptive Learning: Continuous 

improvement with online feedback 

and explanations. 
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