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Abstract

Autonomous vehicles (AVs) rely heavily on deep learning models for perception, planning, and control.
While these models achieve high accuracy, they operate as black boxes, making their decision-making
process opaque. Lack of interpretability in safety-critical environments limits trust, hinders
debugging, and complicates regulatory approval. This paper proposes an explainable deep learning
framework for AV decision-making by integrating state-of-the-art perception and control models
with post-hoc explainability techniques, specifically SHAP (Shapley Additive Explanations) and
LIME (Local Interpretable Model-Agnostic Explanations). Using simulated driving scenarios in
the CARLA simulator and real-world datasets such as KITTI and nuScenes, the framework generates
actionable explanations for vehicle actions, including lane changes, braking, and steering. Our results
demonstrate that XAl techniques can highlight critical features influencing decisions, uncover model
biases, and assist developers in improving AV reliability. The proposed framework enhances safety,
transparency, and accountability, providing a practical path toward regulatory-compliant

autonomous systems.
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Introduction e Perception: Object detection,

. semantic segmentation, and lane
Autonomous vehicles are at the forefront of

identification.
intelligent transportation, offering the promise
of enhanced safety, reduced traffic accidents, e Planning: Path generation, obstacle
and improved mobility. Modern AVs rely on avoidance, and trajectory prediction.

deep neural networks (DNNs) for tasks such

as:
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e Control: Steering, throttle, and

braking commands.

Despite impressive performance, DNNs are
opaque. For instance, a network may decide to
swerve suddenly or brake abruptly, but
engineers cannot determine whether the
decision was triggered by a genuine obstacle,
sensor noise, or spurious correlations in
training data. This lack of interpretability raises
critical safety concerns and impedes trust

among regulators, engineers, and the public.

Explainable Al (XAI) offers techniques to
generate human-understandable insights into
black-box models. Two widely used post-hoc

methods are:

1. SHAP (Shapley Additive
Explanations):  Assigns  feature
importance  scores using  game-
theoretic  principles to  quantify

contributions of each input feature.

2. LIME (Local Interpretable Model-
Agnostic Explanations): Creates local
surrogate models by perturbing inputs
to approximate model behavior near a

specific decision.
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Applying these techniques to AVs can provide
actionable insights into why a vehicle
performs a certain maneuver, helping to
identify biases, incorrect reasoning, or model

weaknesses.

Challenges in AV Explainability:

¢ High-dimensional input from multi-
modal sensors (cameras, LiDAR,

radar).

e Temporal dependencies in sequential

decisions.

e Need for real-time or near-real-time
explanations in simulation or

operation.

Contributions of this work:

1. Integration of SHAP and LIME with

AV perception and control pipelines.

2. Analysis of simulated CARLA
scenarios and real-world datasets

(KITTI, nuScenes).

3. Quantitative and qualitative evaluation
of model interpretability and

decision transparency.
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4. Insights for safety verification and
trust-building in autonomous driving

systems.

Literature Review

A. Deep Learning in Autonomous Vehicles

Deep learning has transformed AVs by

enabling end-to-end perception and control:

e CNNs: Used for image-based object
detection, segmentation, and lane

recognition.

¢ RNNs/LSTMs: Capture temporal
patterns for sequential decision-

making.

e Transformers: Emerging for multi-
modal temporal reasoning, integrating

camera and LiDAR data.

AV systems such as Tesla Autopilot, Waymo,
and OpenPilot demonstrate real-world
applicability but remain black-box systems,

which limits interpretability.

B. Explainable AI (XAI) Techniques

XAl provides tools to make models

transparent:

www.ijernd.com

e LIME: Perturbs input features (e.g.,
pixels, sensor readings) and fits a local
linear model to approximate decision
boundaries. Useful for understanding

single-instance predictions.

e SHAP: Assigns Shapley values to
input features based on their
contribution to the model’s output.
Captures global and local importance
and is mathematically grounded in

cooperative game theory.

Applications of XAl span finance, healthcare,
and autonomous systems, with focus on
trustworthiness, debugging, and regulatory
compliance. In AVs, XAl can highlight which
objects, lanes, or environmental cues

influenced a vehicle’s action.

C. Explainable AV Research

Prior work in explainable AVs includes:

e Saliency maps: Highlight regions of
camera images influencing control

decisions.

e Attention mechanisms: Visualize
which features the model “attends to”

during prediction.
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e Feature importance analysis:

Quantifies the influence of specific
inputs (e.g., LiDAR points, lane

markings).

Challenges remain in real-time applicability
and integration with multi-sensor inputs. Our
work addresses these by combining SHAP and
LIME with both perception and control

models, enabling comprehensive

explainability across the AV pipeline.

Problem Statement

Autonomous vehicles face critical challenges
due to the opacity of deep learning models:

1. Lack of Interpretability: Engineers
cannot verify whether actions are
based on valid features.

2. Safety and Compliance Risks:
Without explainable reasoning, AVs
cannot guarantee safety in edge cases
(e.g., unexpected pedestrians, poor

weather).

Research Question:

“How can post-hoc explainability techniques
(SHAP and LIME) be effectively integrated
with AV deep learning pipelines to provide
interpretable, actionable insights for real-
time decision-making without compromising

performance?”

The goal is to provide both qualitative and

quantitative explanations of vehicle actions
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to improve trust, debugging, and regulatory

compliance.

Methodology

A. System Overview

The framework consists of four primary

components:

1. Data Acquisition: Multi-modal
sensor data (camera, LIDAR, radar)

from CARLA, KITTI, and nuScenes.

2. Model Training:
CNN/LSTM/Transformer models for
perception and control, predicting
object locations, lane positions, and

control commands.

3. Explainability Module: Apply SHAP
and LIME to generate feature
importance and saliency maps for
decisions such as braking, lane

changing, and obstacle avoidance.

4. Visualization & Analysis: Visualize
explanations using heatmaps, feature
rankings, and temporal sequences to

interpret AV actions.
B. Datasets and Simulation

e CARLA Simulator: Generates
urban, highway, and adverse-
condition scenarios. Provides full
control over environmental conditions

and ground-truth labels.
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e KITTI Dataset: Real-world driving
data with camera images and LiDAR
for object detection and depth

estimation.

¢ nuScenes Dataset: Multi-modal
dataset including 360° perception,
dynamic objects, and vehicle states,

supporting complex driving scenarios.

Data Preprocessing: Align multi-modal data
temporally, normalize sensor inputs, and
convert LIDAR point clouds into voxel grids

for CNN input.
C. Model Implementation

e Perception: CNN-based networks for
object detection and semantic

segmentation.

e Control: LSTM/Transformer models
predict steering, throttle, and

braking.

¢ Loss Functions: Cross-entropy for
object detection; mean squared error

(MSE) for control commands.

¢ Training: Conducted on GPU-
enabled TensorFlow/PyTorch
environments, with hyperparameter
tuning (learning rate, batch size,

sequence length).
D. Explainable AI Integration

¢ LIME: Perturbs input frames/features
to approximate local linear models,
providing explanations for individual

vehicle decisions.
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SHAP: Calculates Shapley values for
multi-modal inputs, ranking feature

contributions globally and locally.

Explanations highlight critical
features, such as pedestrian positions,
lane markings, and traffic lights,

affecting vehicle actions.

E. Evaluation Metrics

Quantitative: MAE
(steering/throttle/brake), loU (object

detection), trajectory deviation.

Qualitative: Expert evaluation of
interpretability, clarity, and
usefulness of SHAP/LIME

visualizations.

Results and Discussion

A. Quantitative Results

Brak
Steeri IoU
Throttl ing
Model ng (Segmentat
e MAE MA
MAE ion)
E
CNN-+LS
0.12 0.08 0.07 0.82
™
Transfor
0.09 0.06 0.05 0.85
mer

Transformer-based models perform

slightly better, producing more stable
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predictions that benefit

interpretability.

Reduced MAE indicates more
accurate vehicle actions, which
enhances trustworthiness of

explanations.

B. Explainability Analysis

SHAP Heatmaps: Highlight which
features (lane lines, pedestrians,

obstacles) contributed to a decision.

LIME Analysis: Illustrates how
perturbations in the input affect
predicted actions, revealing temporal

dependencies.

Identified model biases, e.g., over-
reliance on lane markings over

dynamic objects.

Experts found explanations intuitive,
useful for debugging and scenario

analysis.

C. Real-Time Performance

LIME: ~180 ms per frame

SHAP: ~220 ms per frame

e Both methods are feasible for offline
evaluation; potential exists for real-

time integration with optimization.

Conclusion

This research presents a comprehensive
framework for explainable deep learning in

autonomous vehicles:

e Demonstrates integration of SHAP
and LIME for perception and control

decisions.

e Evaluated on simulated CARLA
scenarios and real-world datasets

(KITTI, nuScenes).

e Provides both quantitative and
qualitative insights into vehicle

behavior.

e Enhances trust, safety, and

debuggability of autonomous systems.

Explainable Al is critical for regulatory
compliance, public trust, and safe

deployment of AVs.
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Future Work

Real-Time XAI Deployment:
Optimize SHAP/LIME for live

autonomous driving.

2. Multi-Modal Integration: Combine
camera, LiDAR, and radar
explanations.

3. User-Centric Explanations: Translate
feature importance into natural
language explanations for operators.

4. Adversarial Robustness: Evaluate
explanations under sensor noise and
attacks.

5. Adaptive Learning: Continuous
improvement with online feedback
and explanations.
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