Missing Child Identification System using Deep Learning and Multiclass SVM

Authors

DOI:

https://doi.org/10.1234/kznsbt66

Keywords:

missing child, deep learning, svm

Abstract

Abstract

The "Missing Child Identification System using Deep Learning and Multiclass SVM" is a groundbreaking project designed to address the pressing issue of locating and identifying missing children. Leveraging advanced technologies in the realms of deep learning and machine learning, this project aims to create a robust system for facial recognition and classification.

The deep learning component of the system utilizes state-of-the-art techniques to extract intricate facial features, generating comprehensive representations of each child. Simultaneously, a multiclass Support Vector Machine (SVM) is employed to classify and refine the identification process. The SVM acts as a classifier, distinguishing between different classes of facial features, thereby enhancing the accuracy of categorizing missing children.

The integration of deep learning and multiclass SVM in this project facilitates a more effective and efficient means of matching facial characteristics with existing databases. The result is a powerful tool that streamlines the identification process, enabling authorities to quickly and accurately reunite missing children with their families.

This project not only showcases the potential of cutting-edge technologies in addressing social issues but also underscores the significance of technology-driven solutions in humanitarian efforts. The "Missing Child Identification System" stands as a testament to the positive impact that technology can have on society, particularly in safeguarding the well-being and security of our most vulnerable population – our children.

Index terms

Missing Child Identification, Deep Learning, Multiclass SVM, Facial Recognition, Machine Learning, Social Impact, Humanitarian Technology, Child Safety, Database Matching, Technology Solutions, Vulnerable Populations, Reunification Efforts, Advanced Technologies, Facial Feature Extraction, Classifier Systems

Downloads

Download data is not yet available.

Downloads

Published

2024-09-20