Archives - Page 3
-
Digital Campus Tour Realistic 3D Walkthrough with Interactive Features
Vol. 2 No. 03 (2025)Abstract
This project aims to develop a Virtual Campus Walkthrough application utilizing the three.js library, offering an immersive and interactive experience for users to explore a digital representation of a campus environment. The application will allow users to navigate through the virtual campus using keyboard or mouse inputs, providing a simulated experience akin to physically walking through the real campus. Leveraging the capabilities of three.js, the application will render high-quality 3D graphics and textures, ensuring a visually compelling and realistic environment. Users will have the opportunity to interact with various elements within the virtual campus, such as buildings, landmarks, and informational points of interest. The project will focus on creating a user-friendly interface, optimizing performance for smooth navigation, and integrating interactive features to enhance the overall experience. Ultimately, the Virtual Campus Walkthrough aims to provide a valuable tool for prospective students, faculty, and visitors to explore and familiarize themselves with the campus remotely.
Index Terms
Virtual Campus Walkthrough, three.js library, Immersive Experience, Interactive Exploration, Digital Representation, Campus Environment, Navigation Controls, 3D Graphics, Textures Rendering, Realistic Environment, User Interaction, User-Friendly Interface, Performance Optimization, Interactive Features, Prospective Students, Faculty, Visitors, Remote Exploration.
-
CertiChain – A Blockchain-Based Framework for Digital Certificate Verification
Vol. 2 No. 05 (2025)Abstract
This project aims to explore the application of blockchain technology in enhancing the verification and validation processes of digital certificates. As the digital landscape continues to evolve, the need for secure and reliable methods of validating credentials becomes paramount. Traditional methods of certificate verification often face challenges related to security and trust.
The project focuses on leveraging the decentralized and tamper-resistant nature of blockchain to establish a robust framework for digital certificate verification. Through the implementation of smart contracts and cryptographic principles, the proposed system ensures the integrity and authenticity of digital certificates. The blockchain network acts as a distributed ledger, recording and validating certificate transactions across multiple nodes.
Key objectives of the project include designing a user-friendly interface for certificate submission and verification, implementing secure cryptographic techniques for digital signatures, and integrating smart contracts to automate the validation process. The project also explores the potential scalability and efficiency benefits of blockchain technology in handling large-scale certificate verification scenarios.
Through this endeavor, this project aims to contribute to the advancement of secure credential verification systems, addressing the challenges associated with traditional methods. The project aligns with the broader goals of enhancing digital trust and security, offering a practical and innovative solution for validating digital certificates using cutting-edge blockchain technology.
Index Terms
Blockchain technology, Digital certificates, Verification processes, Validation processes, Decentralization, Tamper-resistance, Smart contracts, Cryptographic principles, Distributed ledger, User-friendly interface, Cryptographic techniques, Digital signatures, Scalability, Efficiency, Credential verification systems, Digital trust, Security, Innovation.
-
CCTV-Based Safety Gear Detection System for Enhancing Workplace Safety in Industrial Environments
Vol. 1 No. 04 (2024)The implementation of CCTV surveillance for safety gear detection in industrial environments is becoming increasingly imperative to enhance workplace safety standards. This project aims to develop a robust system utilizing CCTV cameras to detect the presence or absence of essential safety gear worn by employees, such as helmets, goggles, and gloves. Through image processing techniques and machine learning algorithms, the system will analyze real-time video feeds to identify instances of non-compliance with safety regulations. The project will involve the design and development of algorithms for object detection and classification, as well as the integration of these algorithms into a user-friendly interface for industrial monitoring purposes. The anticipated outcome is a reliable CCTV surveillance system capable of proactively identifying safety gear violations, thereby mitigating potential hazards and promoting a safer work environment in industrial settings.
Index terms
CCTV surveillance, Safety gear detection, Industrial environments, Workplace safety standards, Image processing techniques, Machine learning algorithms, Object detection, Classification algorithms, Real-time video feeds, Non-compliance detection, Safety regulations, User-friendly interface, Industrial monitoring, Safety gear violations, Hazard mitigation, Proactive identification, Work environment safety, Robust system design.
Â
-
Intelligent Fake Profile Detection for Instagram Using Machine Learning
Vol. 2 No. 02 (2025)Abstract:
The project entails the development of a Python-based system for detecting fake Instagram profiles using machine learning models and image processing techniques. The script employs libraries such as TensorFlow, Keras, Scikit-Learn, Pandas, Matplotlib, Seaborn, and OpenCV, facilitating extensive data handling, statistical analysis, visualization, and machine learning model training. The process begins by importing relevant libraries and datasets, followed by preliminary data exploration and visualization to understand the features and distributions within the data. The training dataset is preprocessed and scaled before being fed into a neural network model structured with multiple dense layers and dropout for regularization, optimized using Adam optimizer for categorical cross-entropy loss. The model's performance is evaluated using metrics like accuracy and loss progression during training/validation phases. Further, the script incorporates image processing techniques to analyze profile pictures using Haar Cascade classifiers for face detection, which contributes to determining the authenticity of profiles. Additionally, OCR (Optical Character Recognition) via Easy OCR is applied to extract textual data from images, providing a comprehensive understanding of profile components such as username, posts, followers, and other descriptive elements. Overall, this project integrates multiple computational techniques to create an automated tool that aids in identifying and analyzing fake profiles on Instagram, showcasing the practical application of AI and machine learning in social media management.
Keywords- Instagram, Fake Profile Detection, Python, Machine Learning, TensorFlow, Keras, Neural Networks, Data Visualization, Image Processing, OpenCV, Haar Cascade, OCR, EasyOCR, Pandas, Matplotlib, Seaborn, Scikit-Learn, Statistical Analysis, Data Preprocessing, Model Evaluation, Text Extraction, Profile Analysis.
-
Brain Tumor Detection Using Convolutional Neural Network
Vol. 1 No. 002 (2024)Abstract— Brain Tumor segmentation is one of the most crucial and arduous tasks in the terrain of medical image processing as a human-assisted manual classification can result in inaccurate prediction and diagnosis. Moreover, it is an aggravating task when there is a large amount of data present to be assisted. Brain tumors have high diversity in appearance and there is a similarity between tumor and normal tissues and thus the extraction of tumor regions from images becomes unyielding. In this paper, we proposed a method to extract brain tumor from 2D Magnetic Resonance brain Images (MRI) by Fuzzy C-Means clustering algorithm which was followed by traditional classifiers and convolutional neural network. The experimental study was carried on a real-time dataset with diverse tumor sizes, locations, shapes, and different image intensities. In traditional classifier part, we applied six traditional classifiers namely Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multilayer Perceptron (MLP), Logistic Regression, Naïve Bayes and Random Forest which was implemented in scikit-learn. Afterward, we moved on to Convolutional Neural Network (CNN) which is implemented using Keras and Tensorflow because it yields to a better performance than the traditional ones. In our work, CNN gained an accuracy of 97.87%, which is very compelling. The main aim of this paper is to distinguish between normal and abnormal pixels, based on texture based and statistical based features.
Â
Keywords— CNN, FCM, Medical Image, segmentation, SVM
-
Human Activity Recognition
Vol. 1 No. 02 (2024)Abstract
The project on "Human Activity Recognition" explores the implementation of sensor fusion and machine learning techniques to accurately identify and classify human activities in various scenarios. This research aims to contribute to the development of intelligent systems capable of understanding and responding to human behavior. The project focuses on utilizing data from diverse sensors, including accelerometers and gyroscopes, to capture intricate patterns associated with activities such as walking, running, sitting, and other movements.
The proposed system employs advanced machine learning algorithms for the analysis of sensor data, aiming to enhance the accuracy and efficiency of human activity recognition. By integrating multiple sensor modalities, the project aims to create a robust model capable of handling diverse environmental conditions and activity contexts. The research explores the
application of deep learning methodologies to extract meaningful features and patterns from the sensor data, enabling real-time and context-aware activity recognition.
The significance of this project lies in its potential applications across various domains, including healthcare, sports analysis, and smart home environments. The developed system could find applications in health monitoring, personalized fitness tracking, and creating adaptive environments that respond to human behavior. The project not only contributes to the academic understanding of human activity recognition but also provides practical implications for the development of smart and responsive technologies in our daily lives.
-
Inclusive Sign Language to Text and Speech Conversion via Multi-Dataset Integration
Vol. 2 No. 07 (2025)Abstract
This project aims to develop an advanced system for Sign Language to Text and Speech Conversion by leveraging the power of multi-dataset integration. The primary objective is to enhance the accuracy and inclusivity of existing sign language conversion systems by incorporating diverse datasets.
The project involves the integration of various sign language datasets, encompassing different signing styles, regional variations, and expressions. This approach ensures a comprehensive understanding of sign language, enabling the system to accurately translate a wide range of signs and gestures into written text and spoken words.
By adopting a multi-dataset integration strategy, the system becomes more adaptable and inclusive, catering to the diverse needs of the signing community. The project addresses the limitations of traditional systems by providing a more robust and versatile solution for sign language users.
Through the implementation of this innovative approach, the project aims to contribute to the advancement of communication accessibility for individuals who rely on sign language as their primary mode of expression. The outcomes of this research have the potential to positively impact the field of assistive technology, fostering better communication and understanding for the deaf and hard-of-hearing community.
Index terms
Sign language, Text and speech conversion, multi-dataset integration, Accuracy enhancement, Inclusivity, Signing styles, regional variations, Expressions, Adaptability, Communication accessibility, Assistive technology, Deaf and hard-of-hearing community, Communication technology, Translation systems, Gesture recognition, Accessibility technology, Assistive devices, Language processing, Communication aids, Technological innovation.
-
A Hybrid Approach for Securing Digital Images Using Encryption and Steganography
Vol. 2 No. 01 (2025)Abstract
In today's digital age, ensuring the security and confidentiality of image data is paramount, particularly with the proliferation of online communication and storage platforms. This project proposes a hybrid approach for enhancing image security by synergistically integrating encryption and steganography techniques. The combination of these two methods aims to fortify the protection of digital images against unauthorized access and tampering. Encryption ensures the confidentiality of image content by converting it into an unintelligible form using robust cryptographic algorithms. Concurrently, steganography conceals the encrypted data within the image itself, embedding it imperceptibly into the pixels or metadata. The synergy of encryption and steganography not only safeguards the integrity of image data but also adds an additional layer of concealment, making it arduous for adversaries to detect and decipher sensitive information. Through this project, the efficacy of the hybrid approach will be evaluated through experimentation and analysis, with the ultimate goal of providing a comprehensive solution for image security in various applications and contexts.
Â
-
LSTM-Based Telugu Text Generation: Enhancing NLP for Content Creation and Language Preservation
Vol. 2 No. 04 (2025)Abstract
In this project, a Telugu text generator utilizing Long Short-Term Memory (LSTM) neural networks is developed to facilitate the automatic generation of coherent and contextually relevant Telugu text. The LSTM architecture, known for its effectiveness in handling sequential data, particularly in natural language processing tasks, serves as the foundation for this text generation system. The project aims to address the growing demand for computational tools capable of generating Telugu text, catering to various applications such as content creation, language learning, and cultural preservation. Through extensive training on a large dataset of Telugu text, the LSTM model learns the underlying patterns, semantics, and grammatical structures of the language, enabling it to generate text that closely resembles human-written Telugu content. The project's implementation involves data preprocessing, model training, and evaluation phases, with a focus on optimizing the LSTM network's performance in generating fluent and coherent Telugu text. The developed Telugu text generator provides a valuable resource for Telugu speakers, researchers, and developers interested in leveraging natural language processing techniques for Telugu language applications.
Index Terms
Telugu text generation, Long Short-Term Memory (LSTM) neural networks, Sequential data processing, Natural language processing (NLP), Computational linguistics, Text generation systems, Language modeling, Data preprocessing, Model training, Evaluation metrics, Grammatical structures, Semantic analysis, Cultural preservation, Language learning, Content creation, Telugu language applications, Fluency assessment, Coherence analysis, Text similarity, Resource optimization.
-
AI-Powered Mobile Application for Visually Impaired People
Vol. 1 No. 03 (2024)AbstractThis paper introduces an innovative mobile application powered by Artificial Intelligence (AI) technology, designed to significantly improve the daily lives of visually impaired individuals. The application incorporates advanced features such as object recognition, color recognition, offline functionality, currency notes recognition, barcode reading, text reader. These features collectively empower users by providing real-time information about their surroundings, facilitating safe and independent, enabling secure financial transactions, and enhancing overall accessibility. The integration of AI algorithms ensures accurate and efficient performance, making the application a valuable tool for improving the quality of life and promoting inclusivity for visually impaired individuals. This research contributes to the field of assistive technology by showcasing the potential of AI-driven solutions in addressing accessibility challenges and fostering independence among diverse user groups.
keywords
Artificial Intelligence, Mobile Application, Accessibility, Assistive Technology, Color Recognition, Offline Functionality, Object Recognition, Currency Notes Recognition , Barcode Reader , Text Reader , Scene Recognition, Voice Based Navigation
-
A Tamper-Proof Certificate Validation System Using Blockchain Technology
Vol. 2 No. 06 (2025)Abstract
This project aims to explore the application of blockchain technology in enhancing the verification and validation processes of digital certificates. As the digital landscape continues to evolve, the need for secure and reliable methods of validating credentials becomes paramount. Traditional methods of certificate verification often face challenges related to security and trust.
The project focuses on leveraging the decentralized and tamper-resistant nature of blockchain to establish a robust framework for digital certificate verification. Through the implementation of smart contracts and cryptographic principles, the proposed system ensures the integrity and authenticity of digital certificates. The blockchain network acts as a distributed ledger, recording and validating certificate transactions across multiple nodes.
Key objectives of the project include designing a user-friendly interface for certificate submission and verification, implementing secure cryptographic techniques for digital signatures, and integrating smart contracts to automate the validation process. The project also explores the potential scalability and efficiency benefits of blockchain technology in handling large-scale certificate verification scenarios.
Through this endeavor, this project aims to contribute to the advancement of secure credential verification systems, addressing the challenges associated with traditional methods. The project aligns with the broader goals of enhancing digital trust and security, offering a practical and innovative solution for validating digital certificates using cutting-edge blockchain technology.
Index Terms
Blockchain technology, Digital certificates, Verification processes, Validation processes, Decentralization, Tamper-resistance, Smart contracts, Cryptographic principles, Distributed ledger, User-friendly interface, Cryptographic techniques, Digital signatures, Scalability, Efficiency, Credential verification systems, Digital trust, Security, Innovation.
-
Zero-Shot Multilingual Sentiment Analysis Using Transformer-Based Models Exploring Feasibility and Effectiveness
Vol. 1 No. 04 (2024)This project aims to explore the feasibility and effectiveness of zero-shot multilingual sentiment analysis using transformer-based models. Traditional sentiment analysis techniques often rely on language-specific models trained on large corpora of labeled data, making them impractical for analyzing sentiments across multiple languages. In contrast, transformer models, such as BERT and GPT, have shown promising results in natural language understanding tasks by leveraging large-scale pre-training and fine-tuning on specific tasks. This project proposes to extend the capabilities of transformer models to perform sentiment analysis across various languages without requiring language-specific training data. The project will involve pre-training a transformer model on multilingual text data and fine-tuning it on sentiment analysis tasks using transfer learning techniques. The effectiveness of the proposed approach will be evaluated on standard benchmark datasets in multiple languages, measuring the accuracy and robustness of sentiment predictions. The outcomes of this project have the potential to significantly enhance the applicability of sentiment analysis tools in multilingual settings, catering to diverse linguistic communities and enabling broader cross-cultural sentiment analysis applications.
-
AI-Driven Hybrid System for Personalized Movie Recommendations
Vol. 2 No. 02 (2025)Abstract:
This paper introduces a novel hybrid recommendation system that integrates content-based and collaborative filtering approaches using deep learning techniques to enhance movie recommendations. Our model merges the metadata of movies, including genres, cast, and crew from the MovieLens dataset with user ratings to construct a comprehensive feature set. We employ a Term Frequency-Inverse Document Frequency (TF-IDF) vectorizer to extract content-based features and utilize Singular Value Decomposition (SVD) to derive collaborative filtering features, thereby addressing both user preferences and item characteristics.We further enhance the model by concatenating these features into a unified representation, which is then processed through a deep neural network to predict movie ratings. The network architecture consists of multiple dense layers with dropout regularization to prevent overfitting, ensuring robustness in learning complex user-item interactions. We evaluate our model on a standard dataset, focusing on mean squared error (MSE) as the performance metric to assess accuracy.The results demonstrate the effectiveness of our hybrid approach in providing precise recommendations by leveraging both the semantic content of movies and the historical interactions of users, thereby outperforming traditional methods that rely on singular recommendation strategies. This research contributes to the recommendation system community by showcasing a scalable and efficient method to improve recommendation quality and user satisfaction in multimedia services.
Keywords- Recommendation systems, Deep learning, Hybrid models, Collaborative filtering, Content-based filtering, MovieLens dataset, TF-IDF vectorization, Singular Value Decomposition, Neural networks, User-item interaction, Multimedia services, Movie recommendations, Personalization, Machine learning, Artificial intelligence.