Vol. 2 No. 06 (2025): Real-Time Facial Analytics: A Deep Learning Approach to Gender, Age, and Emotion Recognition

					View Vol. 2 No. 06 (2025): Real-Time Facial Analytics: A Deep Learning Approach to Gender, Age, and Emotion Recognition

Abstract

This project aims to develop a sophisticated real-time face recognition system capable of extracting comprehensive insights such as gender, age, and emotion, while incorporating statistical analysis. The project leverages advanced deep learning architectures, including Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, to achieve a multi-dimensional understanding of facial attributes.

The Convolutional Neural Network is employed for its effectiveness in spatial feature extraction, enhancing the accuracy of gender and age estimation. Support Vector Machines contribute to refining classification boundaries, augmenting the overall precision of the recognition system. The inclusion of Long Short-Term Memory networks enables the model to capture temporal dependencies, facilitating nuanced emotion analysis in real-time scenarios.

Additionally, the project incorporates statistical methods to provide valuable insights into the distribution and variability of demographic attributes and emotional states within the dataset. The holistic integration of these diverse approaches ensures a robust and efficient real-time face recognition system capable of delivering accurate and nuanced results across multiple dimensions. This project not only contributes to the advancement of facial recognition technology but also offers a valuable learning experience in the realm of deep learning and computer vision.

Keywords

Real-time face recognition, Gender estimation, Age estimation, Emotion analysis, Statistical analysis, Deep learning architectures, Convolutional Neural Networks (CNN), Support Vector Machines (SVM), Long Short-Term Memory (LSTM) networks, Spatial feature extraction, Temporal dependencies, Demographic attributes, Emotional states, Dataset analysis, Robust recognition system, Computer vision, Deep learning, Facial attributes, multi-dimensional understanding, Nuanced results.

Published: 2025-06-11

Articles

  • Real-Time Facial Analytics: A Deep Learning Approach to Gender, Age, and Emotion Recognition

    DOI: https://doi.org/10.1234/anwsr661